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This paper sets up a symmetrical "nite element model for structure}acoustic coupling
analysis of an elastic, thin-walled cavity excited both by interior acoustic sources and
exterior structural loading. Some relative problems on the symmetrical model, i.e., the
non-negativity conditions of eigenvalues, the reduced-order modelling conditions of
eigenvalue problem, and the unavailability of the state space method to this model in
complex modal analysis, are discussed. Finally, in order to verify the feasibility and
correctness of the symmetrical method given in this paper, a calculating example which
possesses a rectangular section cavity is given, and the calculated results are compared with
the measured ones.
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1. INTRODUCTION

An elastic, thin-walled cavity is an important kind of engineering structure, for example, the
passenger compartments of automobiles, trains, ships, airplanes, etc. Along with the
increasing desire for comfort of the vehicles, the noise in their passenger compartments has
been paid more and more attention recently. More detailed research work has now revealed
that the low-frequency noise generated in the passenger compartment of a vehicle
signi"cantly in#uences the overall passenger comfort [1}5]. The coupled structure}acoustic
vibration problem in low-frequency range of the elastic, thin-walled cavity actually is the
crux of the low-noise design or noise control for the vehicles' passenger compartments.

The coupled structure}acoustic vibration problem of the elastic, thin-walled cavity can be
dealt with in several ways, such as the "nite element method, the boundary element method,
the elastic acoustics theory, and the statistical energy analysis, etc. Currently, the
fundamental principle of the "nite element method has been grasped and generally accepted
by most engineers and technicians. A lot of commercial software packages developed for
all-purpose "nite element analyses can be obtained easily in practical application. This
makes the "nite element method a relatively simple technique. On the other hand, the "nite
element method has the internal connecting link with the modal analysis method. At the
low frequencies in question, both structural and acoustic modal densities are relatively low,
and so are the modal densities of the coupled structure}acoustic vibration system.
Therefore, the "nite element method is extremely attractive in low-frequency range. But the
commonly used "nite element model for structure}acoustic coupling analysis is
a non-symmetrical set of formulas which choose the structural displacement and the sound
pressure as the variables [5, 6]. This is undesirable because it will cause additional error in
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the successive analysis or solving process. Concretely, a realistic but important reason is
that only the standard modules based on symmetrical modes have been provided in
numerous commercial software packages developed for all-purpose "nite element analyses
at present. In order to study the coupled structure}acoustic problems by means of the
all-purpose "nite element analysis software packages, one has to uncouple the
non-symmetrical, coupled structure}acoustic "nite element model into two symmetrical
ones corresponding to the uncoupled structural and acoustic systems, respectively. The
characteristics and response of the coupled system can be deduced from the uncoupled
systems by means of the modal coupling analysis. The e!ective uncoupling approach often
used here is to ignore the sound pressure put on the structure surface by its interior acoustic
space, thus causing the so-called &&uncoupling error''. Although some software packages can
directly provide the processing modules for the non-symmetrical model, the fundamentals
of this kind of modules are still based on the uncoupling approach. Obviously, the best way
to avoid the uncoupling error is to convert the non-symmetrical, coupled structure}acoustic
"nite element model into a symmetrical one which can be directly treated with the
all-purpose "nite element analysis software packages rather than being uncoupled.

The symmetrical "nite element model can be obtained by means of introducing a certain
#uid potential function as an addition variable [6}10]. Everstine suggested introducing the
acoustic velocity potential in addition to the sound pressure as variables in the #uid
domain, but the symmetrical model obtained has the drawback of bringing a formal
damping matrix though the system is conservative [8]. Ohayon also obtained
a symmetrical model with the method of introducing the acoustic displacement potential
instead of the acoustic velocity potential, which overcame the drawback of Everstine's
model. However, Ohayon's model requires that the number of variables in the "eld of
acoustic displacement potential must be equal to that in the "eld of sound pressure so that
the degrees of freedom in the #uid domain were doubled [9]. Sandberg et al. ameliorated
Ohayon's approach and gave a symmetrical model in which the number of variables in the
"eld of acoustic displacement potential need not be equal to that in the "eld of sound
pressure any longer. Also, static condensation may be applied to the #uid domain to reduce
the degrees of freedom considerably [10]. Nevertheless, Sandberg's model cannot take the
excitation of acoustical source into account because the conservation equations of mass and
momentum in the #uid domain were introduced into the deducing course.

When one studies the problems of the low-noise design and noise control of a structure, the
system response to acoustical sources and structural loading excitations have to be considered
sometimes. This paper, consequently, sets up a symmetrical "nite element model for the
structure}acoustic coupling analysis of an elastic, thin-walled cavity excited by both interior
acoustical sources and exterior structural loading. The model given here reserves the virtues
of Sandberg's model though both the approaches are di!erent. It should be pointed out that
the mass and the sti!ness matrices in the symmetrical model set up in this paper lack the good
character of being positive de"nite (the same as those in Sandberg's model) so that some new
problems involved in modal analysis come forth, which are also studied in this paper.

2. FINITE ELEMENT MODELS

2.1. NON-SYMMETRICAL MODEL

The wave equation in the area of acoustic source in the #uid domain is [11]

+ 2p!
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where +2 is the Laplace operator, p the sound pressure, c the speed of sound in the #uid
medium, t the time, o

f
the density of #uid medium, and q the distribution of the volume

velocity in the area of acoustic source, which becomes zero outside the source area. For an
elastic, thin-walled cavity, the boundary condition is

Lp

Ln
"!o

f

L2w

Lt2
, (2)

where n is the outward unit normal vector at the #uid}structure interface, and w the normal
displacement of the walls of the enclosed cavity.

By using the "nite element method, the #uid and the structural domains can be divided
into elements. Expanding p and w in di!erent sets of sound pressure and structural
displacement interpolation functions, i.e., MN

p
N and MNdN, one has

p"MN
p
NMpN(e), (3)

w"MNdNMdN(e), (4)

where MpN(e) is the unknown vector of the sound pressure at the nodes of the #uid element,
and MdN(e) is that of the structural displacement at the nodes of the structural element.

Substituting equations (2)} (4) into equation (1), one can get a set of "nite element
formulas in the #uid domain with the Galerkin method which takes MN

p
N as the weighting

function set:

[G]MpK N#[H]MpN"MI
q
N![A]MdG N, (5)

where [G] is the acoustic mass matrix, [H] the acoustic sti!ness matrix, [A] the coupling
matrix, and MI

q
N the vector for acoustic source excitation.

In the structural domain, a set of "nite element formulas can be deduced with a relatively
straightforward method based on the virtual work theory:

[Md]MdG N#[Kd]MdN"MI
s
N#o~1

f
[A]TMpN, (6)

where [Md] is the structural mass matrix, [Kd] the structural sti!ness matrix, and MI
s
N the

vector for structural loading excitation.
Then, a "nite element model of the structure}acoustic coupled system can be set up by

means of rewriting equations (5) and (6) into an incorporate form:
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Due to the existence of the coupling matrix [A], equation (7) is a non-symmetrical model.
The elementary matrices corresponding to the submatrices in equation (7) are respectively:
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[Kd](e)"P
V(e)

MNdNT[B]T[D][B]MNdN d<, (11)

[A](e)"PR(e)
a
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f
MN

p
NTMNdN dR, (12)

MI
q
N(e)"PX(e)

MN
p
NTo

f

Lq

Lt
dX, (13)

MI
s
N(e)"PR(e)

b

MNdNT f dR, (14)

where + is the nabla operator, o
s

the density of the structure material, f the distribu-
tion of the exterior force loading on the structure, [B] the structural geometry matrix,
[D] the structural elasticity matrix, X(e) the volume of the #uid element, <(e) the volume
of the structural element, R(e)

a
the area of the coupled interface between the #uid and

the structural elements, and R(e)
b

the area of the structural element surface su!ering the
force f.

2.2. SYMMETRICAL MODEL

Introducing the acoustic displacement potential function t, one has

u
f
"+t, (15)

where u
f

is the displacement of the #uid particle. Here, the boundary condition can be
expressed as

u
f
) n"w. (16)

The linearized momentum conservation equation in the #uid domain is

o
f

L2u
f

Lt2
#+p"0. (17)

Substituting equation (15) into equation (17), one has

o
f

L2(+t)

Lt2
#+p"0. (18)

Equation (18) is operated with nabla operator + and rewritten as

+2p"!o
f

L2 (+2t)

Lt2
. (19)

Substituting equation (19) into equation (1) and then integrating with respect to time t two
times (the initial condition is neglected), the following equation can be deduced:
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Compartmentalizing the #uid domain again and expanding t in a set of acoustic
displacement potential interpolation functions MNtN, one has

t"MNtNMtN(e), (21)

where MtN(e) is the unknown vector of the acoustic displacement potential at the nodes of
the #uid element corresponding to the second discretization of the #uid domain.

Introducing equations (3), (4), (16) and (21) into equation (20), one can deduce a set of
"nite element formulas di!erent from equation (5) in the #uid domain with the Galerkin
method in which MN

p
N is still taken as the weighting function set:

[K
p
]MpN"MI

a
N#[A

pt]MtN![A
pd]MdN, (22)

where [K
p
] is the sound pressure sti!ness matrix, [A

pt] the coupling matrix between
p and t, and [A

pd] the coupling matrix between p and d. It is noticed that the vector
of acoustic source excitation in equation (22) is MI

a
N which is unequal to MI

q
N in equation

(5).
Introducing equations (3) and (21), one can also derive another set of "nite element

formulas in the #uid domain based on equation (18) with the weighted residual method
which takes M+NtN as the weighting function set:

[Mt]MtG N"![A
pt]TMpN, (23)

where [Mt] is the mass matrix about acoustic displacement potential.
The elementary matrices corresponding to the matrices in equations (22) and (23) are

respectively:

[K
p
](e)"PX(e)

1

o
f
c2

MN
p
NTMN

p
N dX, (24)

[A
pt](e)"PX(e)

a

M+N
p
NT ) M+NtN dX, (25)

[A
pd](e)"PR(e)

a

MN
p
NTMNdN dR, (26)

MI
a
N(e)"PX(e)

MN
p
NT AP

t

0

q dtB dX, (27)
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where Q(e) is the volume of the #uid element corresponding to the second discretization of
the #uid domain, and X(e)

a
the volume of the coupled space between the #uid elements

corresponding to the "rst and the second discretization respectively.
Comparing equation (12) with equation (26), one has

[A]"o
f
[A

pd] . (29)
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Substituting equation (29) into equation (6), then equations (6), (22) and (23) can be
assembled as

[0] [0] [0]

[0] [Mt] [0]

[0] [0] [Md] G
MpK N

MtG N

MdG N H#
![K

p
] [A

pt] ![A
pd]

[A
pt]T [0] [0]

![A
pd]T [0] [Kd] G
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MtN

MdN H"G
!MI

a
N

M0N

MI
s
N H . (30)

It is equation (30) that is a symmetrical "nite element model for the structure}acoustic
coupling analysis of an elastic, thin-walled cavity excited both by interior acoustic sources
and exterior structural loading.

For convenient reasons, let

[M]"

[0] [0] [0]

[0] [Mt] [0]

[0] [0] [Md]
, (31)

[K]"

![K
p
] [A

pt] ![A
pd]

[A
pt]T [0] [0]

![A
pd]T [0] [Kd]

, (32)

MfN"M!MI
a
NT M0NT MI

s
NTNT, (33)

MxN"MMpNT MtNT MdNTNT. (34)

Then, equation (30) can be rewritten as

[M]MxK N#[K]MxN"MfN, (35)

where [M] is the mass matrix and [K] is the sti!ness matrix of the coupled system. Both of
them are symmetrical, real-value matrices, but neither of them is positive de"nite. In fact,
[M] is a positive semi-de"nite matrix and [K] is an inde"nite matrix.

3. CHARACTERISTIC ANALYSES OF THE SYMMETRICAL MODEL

3.1. NON-NEGATIVITY CONDITIONS OF EIGENVALUES

The generalized eigenvalue problem corresponding to equation (35) is

([K]!j[M])MXN"M0N, (36)

where j is the eigenvalue and MXN is the eigenvector of the system. The eigenequation is

det([K]!j[M])"0. (37)

According to the algebraic theory, it is known that under the positive de"nite condition
of matrix [M], all the eigenvalues are positive if matrix [K] is positive de"nite, and all the
eigenvalues are non-negative if matrix [K] is positive semi-de"nite [12, 13]. Obviously,
matrix [M] and matrix [K] in equation (36) do not satisfy the above conditions. Hence, the
non-negativity conditions of the eigenvalues of the system must be investigated.
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In fact, all the submatrices in matrix [M] and matrix [K] expressed, respectively, in
equations (31) and (32) are sparse band matrices. So, equation (37) can be expanded to the
following form if all the diagonal elements in submatrix [K

p
] are non-zero:

(!jmt
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) (!jmt
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n1n1

) (kd
11
!jmd

11
) (kd

22
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n2n2
!jmd

n2n2
)"0,

(38)

where, n
1

is the order of matrix [Mt], n
2

the order of matrix [Kd] and matrix [Md], mt
ii
,

kd
ii

and md
ii

are, respectively, the diagonal elements of matrix [Mt], matrix [Kd] and matrix
[Md] corresponding to the order i.

At the same time, equation (38) is also the eigenequation of the following eigenvalue
problem:

AC
[0]

[0]

[0]

[Kd]D!j C
[Mt]
[0]

[0]

[Md]DB MYN"M0N. (39)

That means the eigenvalues of equation (36) are equal to those of equation (39), but the
eigenvectors of the two equations are di!erent.

In equation (39), matrix [Kd] is positive de"nite or positive semi-de"nite, therefore, all the
eigenvalues are non-negative if both of matrix [Mt] and matrix [Md] are positive de"nite.
It is these that are the non-negativity conditions of the eigenvalues of equation (36).

For the system expressed by equation (30), zero eigenvalues correspond to the constant
sound pressure and acoustic displacement potential solution in a rigid wall cavity.

3.2. REDUCED ORDER MODELLING CONDITIONS OF EIGENVALUE PROBLEM

Generally, only some of the low order modes of a system in engineering application are
taken into account. On the other hand, in order to decrease the calculation work, the order
of a large eigenvalue problem must be reduced in practice. Presently, the primary reduced
order modelling method is the Rayleigh}Ritz method and its ameliorations. The theoretic
basis of the Rayleigh}Ritz method is that all the eigenvalues must be extrema of the
Rayleigh quotient which can be de"ned as [14, 15]

o (M/N)"
M/NT[K]M/N
M/NT[M]M/N

, (40)

where M/N is an arbitrary vector. Moreover, [M] and [K] in equation (40) should be
symmetrical, positive de"nite matrices commonly.

Since both of matrix [M] and matrix [K] in equation (36) are symmetrical but not
positive de"nite, one can reduce properly certain restrictions for matrix [M] and matrix
[K] in formation of the Rayleigh quotient, namely, matrix [M] and matrix [K] in equation
(40) ought to be symmetrical, and matrix [M] should be also non-singular. Therefore, the
Rayleigh quotient can be constructed with matrix [M] and matrix [K] in equation (36) if
the singularity of matrix [M] can be removed with an appropriate shift technique [12}17].
In fact, the eigenvalues of all order modes of equation (36) are still extrema of the Rayleigh
quotient treated with the method discussed here. This shows the possibility of the reduced
order to the eigenvalue problem expressed with equation (36). The detailed proof is given as
follows:

Assume that equation (36) has already been treated with a certain shift technique so that
matrix [M] in it is non-singular now (the original symbols are still used here for
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convenience). Supposing that j
i

is the eigenvalue and MXN
i

is the relevant eigenvector
corresponding to the mode i, vector M/N can be expanded as

M/N"
n
+
i/1

a
i
MXN

i
, (41)

where a
i
is the constant coe$cient and n the order of the eigenvalue problem already treated

with the shift technique.
Substituting equation (41) into equation (40) and noticing the weighting orthogonality

between eigenvectors MXN
i
about matrix [M] and matrix [K], one has

o (M/N)"
n
+
i/1

a2
i
KI

iN
n
+
i/1

a2
i
MI

i
, (42)

where KI
i
is the modal sti!ness and MI

i
the modal mass of the system corresponding to the

mode i. It is known that

j
i
"

KI
i

MI
i

. (43)

If equation (42) is di!erentiated with respect to a
k
and equation (43) is introduced into it,

the following equation can be deduced:

Lo (M/N)
La

k

"

2a
k
MI

k
+n

i/1
a2
i
MI

i

(j
k
!o (M/N)), k"1, 2,2, n. (44)

It is obvious that the partial derivative on the left-hand side of equation (44) is equal to
zero if the Rayleigh quotient o(M/N) is equal to eigenvalue j

k
. Therefore, the proof is

successful.

3.3. UNAVAILABILITY OF THE STATE SPACE METHOD

In the case of arbitrary viscous damping, a symmetrical, real value damping matrix, [C],
is introduced. Then, the quadratic eigenvalue problem of the vibration system is

(m2[M]#m[C]#[K])MUN"M0N, (45)

where m is the eigenvalue and MUN is the eigenvector. The eigenequation of equation
(45) is

det(m2[M]#m[C]#[K])"0. (46)

It should be noticed that the eigenvalues and eigenvectors here may be complex.
Since the damping matrix [C] usually cannot be uncoupled in the real-valued modal

space, equation (45) is linearized with the so-called state space method which is the same as
that commonly used for uncoupled systems [14, 15]. Consequently, the generalized
eigenvalue problem of the coupled system in the state space is

AC
[C]

[M]

[M]

[0] D m#C
[K]

[0]

[0]

![M]DB G
MUN
MUNmH"G

M0N
M0NH . (47)
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The corresponding eigenequation is

detAC
[C]

[M]

[M]

[0] D m#C
[K]

[0]

[0]

![M]DB"0. (48)

By examining the characteristics of the submatrices in equations (31) and (32), one can
easily "nd that equation (48) in this case is an identical equation actually. That is to say,
equation (48) is valid for arbitrary values of m. In fact, the essential reason for the result is
still the singularity of matrix [M] because it means that equation (48) is no longer
equivalent to equation (46). Therefore, the eigenvalues of equation (45) cannot be obtained
in the state space.

4. EXAMPLE

Consider an elastic, thin-walled cavity with rectangular sections shown in Figure 1. The
length of the cavity is 1)2m, the width is 0)5 m, the height is 0)8 m, and all the wallboards
consist of steel plates with a thickness of 2 mm. Point O is the origin of co-ordinate.
A (0)2, 0)7, 0)5) is an interior point where a loudspeaker is set as a point sound source and
B (0)2, 0)1, 0)5) is another interior point of the cavity. S (0)4, 1)1, 0)8) is the excitation point
and a random exciting force in the vertical downward direction is exerted here. The cavity is
suspended with four elastic ropes hitched at the angle points on its top surface. The shaker is
also suspended with an elastic rope.
Figure 2. Structural and #uid elements.

Figure 1. Rectangular section cavity.



Figure 3. Experimental set-up.
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The structural and #uid domains of the cavity are compartmentalized, as shown in Figure 2.
The structural element is a rectangular plate element with four nodes and the #uid element
is a hexahedral element with eight nodes. Here, the same discrete fashion is taken for the
"eld p and "eld t.

The symmetrical "nite element model of the rectangular section cavity is set up with the
method given in this paper. Instead of a special application program, it can be solved by any
of the all-purpose "nite element software packages without causing the uncoupling error.
Here the solutions are obtained by using the commercial "nite element software package
Ansys5.4 as the pre/post processor and the equation and eigenvalue solvers. The number of
degrees of freedom that can be endured depends mainly on the memory capacity and
computing power of the computer (hardware).

In order to compare with calculating results, the response and characteristics of the cavity
are also studied experimentally, as shown in Figure 3. The acoustical source (loudspeaker)
was calibrated in advance to obtain the FRF of the radiated volume velocity referenced to
the input voltage.

The sound pressure at point B caused by the random excitation of the point sound source
at point A is calculated by the symmetrical and non-symmetrical "nite element models
respectively. The calculated amplitude}frequency curves of the sound pressure are
compared with the measured one, as shown in Figure 4. It can be seen that better
consistency between the measured curve and the curve based on the symmetrical model is
obtained. The di!erence between the measured curve and the curve based on the
non-symmetrical model is relatively larger.

The "rst 20 low order eigenfrequencies of the coupled system are calculated and
contrasted with those measured in the experiment as shown in Table 1 (except the zero
eigenfrequencies). It is obvious that the di!erences between the calculated and the measured
values are very small.

It should be emphasized that the data must be sampled in all the "elds of p, t and d (or dG )
if the eigenfrequencies of the coupled system are determined with the experimental modal
analysis method. Otherwise, the experimental analysis model will be defective and bring
relatively large errors. Since the currently used apparatuses cannot sample data directly in
the "eld t, one has to obtain t by means of mathematical treatment through the "eld
p [18].



Figure 4. Amplitude}frequency curve: ++++, measured curve; ***, calculated curve (symmetrical model);
***, calculated curve (non-symmetrical model).

TABLE 1

Eigenfrequencies (Hz)

Mode no.
(coupled
system)

Coupled system
(calculated)

Coupled system
(measured)

Acoustic mode in
rigid wall cavity

(calculated)
Structural mode in
vacuum (calculated)

1 107)51 107)36 105)30
2 144)82 145)41 143)67
3 151)93 155)80 144)02
4 189)06 187)00 183)28
5 214)91 215)37 213)69
6 219)02 221)72 216)23
7 231)33 228)67 224)45
8 257)45 257)05 248)61
9 257)83 259)94 256)53

10 281)20 278)63 272)07
11 288)81 287)45 285)82
12 300)21 301)39 289)00
13 315)77 319)15 303)42
14 324)05 320)83 310)53
15 347)43 348)07 345)25
16 358)13 355)27 345)62
17 359)04 357)18 351)38
18 360)48 360)52 353)28
19 361)88 362)65 358)42
20 370)36 367)86 358)73
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The acoustic modes (only in "eld p) in rigid wall cavity and the structural modes in
vacuum are also analyzed with Ansys5.4 in order to compare. The results corresponding to
the mode number of the coupled system are also listed in Table 1. It can be found that some
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of the eigenfrequencies of the two instances are close to each other, such as modes 2 and 3,
modes 15 and 16, modes 19 and 20. However, for the coupled system, each eigenfrequency
undergoes divergence. This phenomenon of eigenfrequency separation was also found in
Sandberg's research work [10].

It should be pointed out that the errors between the calculated results based on the
symmetrical "nite element model and the measured ones are chie#y caused by some
limitations of the theoretical model. For example, the cavity is regarded as a perfect airtight
system theoretically, but in fact there are some apertures in the wallboards of the cavity for
setting the supports and cables of the microphones and loudspeaker; and the loudspeaker at
point A actually is not a perfect point source, etc. In addition, the errors also come from the
experimentation itself, such as the modal truncation error in the experimental modal
analysis and the interfering signals from environment, etc.

5. CONCLUSIONS

A symmetrical "nite element model for the structure}acoustic coupling analysis of an
elastic, thin-walled cavity excited by both interior acoustical sources and exterior structural
loading has been put forward. Then, the coupled structure}acoustic problems can be
studied by means of the standard analysis modules based on symmetrical models provided
in numerous commercial software packages developed for the all-purpose "nite element
analysis without the uncoupling error.

Both the mass and the sti!ness matrices in the symmetrical model put forward here are
not positive de"nite. However, the eigenvalues can still be non-negative under certain
conditions, and the order of the corresponding eigenvalue problem can still be reduced with
the Rayleigh}Ritz method if the singularity of the mass matrix can be removed with an
appropriate shift technique. Moreover, it is the singularity of the mass matrix that makes
the eigenvalues, in the case of arbitrary viscous damping and complex modal analysis,
which cannot be determined in the state space.

An example is given to validate the feasibility and correctness of the symmetrical method
given in this paper. In fact, the "nite element method (with the corresponding modal
analysis technique) is more suitable in the relatively low-frequency range because of the
relatively low modal densities. A further research work should be done in order to
determine the upper frequency limit of the rationality of the "nite element method.
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